Preparation of standard solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and HCl

Volumetric analysis

Volumetric analysis is the determination of an unknown solution by reaction with a solution of known concentration. The apparatus used is standard glassware.

- Preparation of solutions
- Titration (reacting the solutions together)

How can we Preparation any standard solution

- A prior calculation is carried out to estimate the approximate mass of the primary standard required to make up a known volume of standard solution.
- The primary standard is accurately weighed out on an electronic balance using a weighing bottle or boat.
- The solid is transferred to the volumetric flask and the weighing bottle rinsed into the volumetric flask.
- A volume of distilled water is added to the flask and the mixture swirled until all of the solute has dissolved.
- Distilled or deionised water is added to the mark (an engraved line on a volumetric flask).
- The volumetric flask is inverted several times to thoroughy mix the contents.
- The flask is labelled and set to one side.

Primary standards

A primary standard is a compound which has the following characteristics:

- It is available in a high degree of purity
- It is chemically stable in the atmosphere
- It is chemically stable in solution
- It reacts with the compound under investigation
- It has a high relative mass

Example: Preparation a standard solution of sodium carbonate 0.1 N in

 1L:1-Sodium carbonate has the formula $\mathrm{Na}_{2} \mathrm{CO}_{3}$. It has a relative formula mass of 106 so it is eq.wt $=106 / 2=53$.. If we wish to prepare 1000 ml of a 0.1 N solution then we need a total of
$N \times V=W t / e q . w t \times 1000 \rightarrow 0.2 \times 1000=W t / 53 \times 1000=10.6 \mathrm{~g}$

2-Approximately 10.6 g is accurately weighed on an electronic balance in a weighing bottle.

3-The sodium carbonate is transferred into a 1000 ml volumetric flask and about 100 ml of deionised water is added, rinsing out the weighing bottle.

4-The mixture is shaken in the volumetric flask until the sodium carbonate dissolves.

5-Deionised water is added to the volumetric flask up to the mark.

When we need another concentration from this standard solution then we should follow those steps with attachment equation :

1-If we need diluted solution from Previous standard solution of sodium carbonate e.g. ; when we prepare a 0.08 N in 100 ml from standard solution 0.2 N ,, then use ;

$$
\begin{gathered}
\mathrm{N} \times \mathrm{V}\left(\text { of } \mathrm{Na}_{2} \mathrm{CO}_{3}\right) \text { dilute }=\mathrm{N}^{\backslash} \times \mathrm{V}^{\backslash}\left(\text { of } \mathrm{Na}_{2} \mathrm{CO}_{3}\right) \text { conc } \\
0.08 \times 100=0.2 \times \mathrm{V}^{\backslash} \quad \rightarrow \quad \mathrm{V}^{\backslash}=40 \mathrm{ml}
\end{gathered}
$$

2-then transfer 40 ml from concentration solution to volumetric flask and add water to the mark. Now you get a diluted solution and by the same way we can prepare HCl with different concentrate ..

